# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "ebm" in publications use:' type: software license: MIT title: 'ebm: Explainable Boosting Machines' version: 0.1.0 doi: 10.32614/CRAN.package.ebm abstract: An interface to the 'Python' 'InterpretML' framework for fitting explainable boosting machines (EBMs); see Nori et al. (2019) for. EBMs are a modern type of generalized additive model that use tree-based, cyclic gradient boosting with automatic interaction detection. They are often as accurate as state-of-the-art blackbox models while remaining completely interpretable. authors: - family-names: Greenwell given-names: Brandon M. email: greenwell.brandon@gmail.com orcid: https://orcid.org/0000-0002-8120-0084 repository: https://bgreenwell.r-universe.dev repository-code: https://github.com/bgreenwell/ebm commit: cfcfd3541fe8698eff35a8f80940a61f7373f3a1 url: https://bgreenwell.github.io/ebm/ contact: - family-names: Greenwell given-names: Brandon M. email: greenwell.brandon@gmail.com orcid: https://orcid.org/0000-0002-8120-0084